

Niloofar Zendehdel

U.S. Permanent Resident Austin, TX 573-466-2017 niloofar.zendehdel@gmail.com
 [niloofar-zendehdel](https://www.linkedin.com/in/niloofar-zendehdel/) www.nildel.com Niloofar Zendehdel

Professional Summary

Robotics engineer with hands-on experience in **deploying, integrating, and troubleshooting robotic and electro-mechanical systems**. Skilled in **hardware/software integration and system deployment**, with a proven ability to lead cross-functional teams and deliver complex robotics projects. Currently completing a PhD focused on **autonomous robotic systems in smart manufacturing**.

Experience

- Missouri University of Science and Technology** Oct 2021 – Present
Rolla, MO
Graduate Research Assistant
- Developed and deployed drone control systems driven by brain and eye signals, integrating embedded hardware, signal processing, and real-time control for advanced human-robot interaction in manufacturing.
 - Designed, integrated, and tested a custom UAV equipped with an RGBD camera and a Marvelmind ultrasound-based positioning system, enabling reliable navigation in constrained indoor environments.
 - Built and validated a motor intention detection system using brain signals and deep learning, improving classification accuracy for robotic task prediction.
 - Authored technical documentation and mentored a team of four students in robotics integration projects, providing guidance in troubleshooting and system deployment.
- Parstronic Automotive Control Systems** Jul 2019 – Oct 2019; ended due to receiving U.S. visa
Tehran, Iran
Electrical-Control Engineer
- Simulated various approaches, including Field-Weakening Control (FWC), for controlling speed and torque of Permanent Magnet Synchronous Motors (PMSM) using MATLAB Simulink.

Education

- Missouri University of Science and Technology** October 2021 - Present
Rolla, MO
PhD in Mechanical Engineering (Focus: Electrical & Robotics, GPA 4.0/4.0)
- Honors:** Awarded **Kummer Innovation and Entrepreneurship Doctoral Fellowship**
First place for best research at Missouri S&T 2023 graduate research showcase-Poster Session [\[link\]](#)
First place at Missouri S&T 2024 Startup Challenge [\[link\]](#)
Finalist in 3MT (Three Minute Thesis) competition 2024 at Missouri S&T [\[link\]](#)
 - Thesis:** Human-Robot Collaboration in Manufacturing
Deployed a drone-based tool delivery system, integrated an eye-signal interface for UAV navigation, and tested a brain-signal motor intention detection method for application in robotic collaboration.
 - Relevant Coursework:** Adaptive Dynamic Programming (Python, Reinforcement Learning), Mechatronics (Python, Matlab, Arduino, Nvidia Jetson Nano, Parallel Computing & Threads, Linear Control, Sensors & Actuators: IMU, Encoders, Servo & Stepper motors), Deep Learning (CNN, LSTM, GPU, Python, Matlab)

- Babol Noshirvani University of Technology** September 2011 - February 2018
Babol, Iran
Bachelor and Master of Science in Electrical Engineering (GPA: 18.08 & 18.30 / 20.00)
- Honors:** **First place** undergraduate student in department of electrical engineering
 - Thesis:** Adaptive Sliding Mode control for trajectory tracking control of Autonomous Underwater Vehicle (AUV)
 - Relevant Coursework:** Robotics (Matlab, Kinematics & Dynamics of Robotic Arm), Adaptive Control (Matlab), Robust Control (Matlab), System Identification (Matlab), Nonlinear Control, Modern Control (Matlab, Kalman Filters & State Estimation), Digital Control, Linear Algebra

Technical Skills

- **Robotics & Systems:** UAVs, ROVs, ground vehicles, robotic arms, autonomous robots, hardware & sensor integration, electro-mechanical troubleshooting
- **Control & Modeling:** System modeling and simulation, feedback & adaptive control, robust control, state estimation (Kalman filters), real-time implementation with multi-threading
- **Mechanical Design:** Siemens NX CAD, SolidWorks, 3D printing
- **Programming:** Python, C/C++, MATLAB
- **Hardware & Electronics:** Embedded systems (Arduino, Jetson, AVR), IMU, encoders, RGBD cameras, range finders, motors (DC, Servo, Stepper), PCB design (Altium)
- **Software & Tools:** ROS2, Ardupilot, Simulink, TensorFlow, PyTorch, V-REP, Proteus
- **Other:** Technical documentation, cross-functional collaboration

Projects

Tool Detection for Smart Manufacturing (YOLOv5) | Python, Object Detection, YOLOv5

- Deployed YOLOv5 to have a precise tool detection system for smart manufacturing with > 98% accuracy.
- Collected and annotated over 3,000 images of various tools for training the YOLOv5 model.

Design and Construction of a Hexacopter UAV | Flight Controller, Ardupilot, RGBD camera, Indoor positioning System

- Assembled and deployed a hexacopter UAV integrated with RGBD camera and indoor positioning for autonomous navigation.
- Conducted flight tests and validated system performance in lab environment.

Design and Construction of a ROV (Remotely Operated Vehicle) | AVR, IMU, Servo Motors, Motor Driver

- Designed and assembled ROV with four motors for horizontal and vertical propulsion, controlled by a joystick.
- Designed custom PCB using Altium Designer for a high voltage, high-current DC motor driver using HIP4081 MOSFET driver in H-bridge configuration.
- Integrated a camera and a custom-built gimbal system for angle control and live footage streaming.

Adaptive Robust Control for AUV Trajectory Tracking | AUV, Trajectory Tracking, Disturbance Estimation

- Employed adaptive sliding mode control for robustness against uncertainties and disturbances.
- Utilized a dual-layer adaptive law independent of disturbance boundaries to minimize chattering.
- Validated the control scheme via **simulations using Simulink**, demonstrating superior performance over finite-time tracking methods.

Eye-controlled UAV navigation | EOG, UAV, Jetson Orin Nano, LSTM, Signal Processing

- Deployed an EOG-based UAV control system achieving > 97% accuracy in real-world testing, outperforming vision-based alternatives.
- Designed an experimental protocol for collecting high-quality eye movement data paired with precise screen coordinates for training purposes.
- Deployed the system on resource-constrained NVIDIA Jetson Orin Nano hardware, achieving 38.87 FPS with only 0.69 MB of memory, representing a 13.9× improvement in processing speed and 319× reduction in memory usage compared to vision-based alternatives.
- Created an intuitive user interface with text-to-speech feedback that enabled fully hands-free UAV operation through eye movements alone.

Grasp and Lift Classification Using EEG Signals | EEG, Pytorch, CNN, LSTM, MLP

- Utilized EEGLAB for artifact removal and signal preprocessing, ensuring clean EEG data for reliable classification analysis.
- Conducted systematic analysis to determine optimal channel configuration (18 channels), frequency bands (delta and theta), and sampling window (250 samples).
- Designed an EEGNet+Transformer model that improved classification accuracy by 4% over the standard EEGNet baseline.